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Low autocorrelated multiphase sequences
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The interplay between the ground-state energy of the generalized Bernasconi model to multiphase, and the
minimal value of the maximal autocorrelation functiddy,,,=max|C«|, K=1,... N—1, is examined ana-
lytically in the thermodynamic limit where the main results @eFor the binary case, the minimal value of
Cpnax OVer all sequences of length, minC,, is 0.435/N, significantly smaller than the typical value for
random sequence3(ylogNyN). (b) A new method to approximat€,,,is obtained using the observation of
data collapse(c) minC,,, is obtained in an energy which is about 30% above the ground-state energy of the
generalized Bernasconi model, independent of the number of phages For a givenm, minCmaxoc\/m
indicating that form=N, minC.,,=1, i.e., a generalized Barker code exists. The analytical results are con-
firmed by simulations.
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In many applications of communication scierfdg?], as  the solutions of this minimization problem. Note that for
well as a variety of other fields, it is necessary to find setrandom sequences,., is typically O(y/logNyN). For a se-
quences with low autocorrelation. Some of these applicationguence of lengthN, the maximal possible ratio between the
utilize the pulse compression feature of low autocorrelategheak,|Cy|=N, and the maximal off-peak autocorrelations,
sequences to obtain high resolution in radars and sonars. |C,| with K=1,... N—1 is N/1. The only known binary
other applications, the shifts of such periodic sequences cagequences with this ratio are the Barker codes of length 2, 3,
be used to identify users in multiuser systems. Due to theig, 5 7, 11, and 13. Obviously, the Barker sequeri€s
importance, low autocorrelated sequences have evoked vghen they exist, furnish a minimum for the two minimiza-
wide spread interest accompanied by the development afon problems. However, Turyfil0] has shown that no other
various methods for constructing such sequertgs binary codes such as this exist for any length less than 144 or

In order to construct a binary sequer8e(s;, ...,Sy)  for odd length greater than 13. An exact solution for these
with low off-peak autocorrelations, one has to define whichtwo minimization problems is known only for systetfus to
quantity has to be minimized. The different applications di-N=59) which are small enough to permit an effective ex-
vide the low autocorrelated sequences into two types in comaustive search7]. Extrapolation of the ground-state ener-
respondence with the quantity which they minimize. The firstgies which were found for small systems using an exhaustive

kind of low autocorrelated sequences minimizes the Hamilsearch indicates that the maximal value &f F,

tonian of the Bernasconi modg3—8] which is given by =limy_...N?/2H ;,~8.5 [7]. Moreover, F, Was conjec-
N_1 tured by Golay{11,12] to be bounded from above by 12.324.
H— 2 c2 1 The following questions regarding low autocorrelated se-
& TR quences are still open and are at the center of our study: Do

the sequences that minimigg,,, minimize the energy of the
where for the case of nonperiodic boundary conditions,Bemasconi model as well? _In case where the two minimiza-
which is at the center of our study, tion problems are not equivalent, how far are the energy
values of the sequences which minimi2g,,, from the val-
N-K ues of the ground-state energy? Additional interesting ques-
Ck= 2 SiSj 4K » 2 tions arise when multiphase sequences, whose terms are
i=1 complexmth roots of 1 form>2, are considereffl3—15.
For such sequences=exp((2n/m)l) where =1, ... ,mand
T _ <N : . .
and for the periodic cas€y = 2;_S;S(j+k-1)moaj+1- TS the correlations are defined as
is a deterministic model without explicit disorder. However,
since its ground states are highly disordered, this model ex-
hibits features of a glass transition like a jump in the specific «
heat[3] and slow dynamics and aging!]. Note that for Ck= le SiSj+k s )
random sequences the average valukl @i the nonperiodic
case isN?/2, whereas for low autocorrelated sequences this
energy is reduced by a merit factBe>1 to N?/2F. wheres,  is the conjugate o8;, ¢ . What is the influence
However, there are applications for which the maximalof the number of phases both é%,, and on the minimal
off peak autocorrelationC.,,=max|Cx|, has to be mini- value of C,,, minC,.? Does a generalized Barker code
mized. The second kind of low autocorrelated sequences aexist for lengths larger thaN =45 [16] which is the maxi-

N—-K
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mal length for which a multiphase Barker code has been

found? How does the minimal number of phases required fo
a Barker code grow wittN?

In this paper we suggest an analytical technique to calcu-

late F .« and mirC,,,, for both binary and multiphase se-
guences. Since these two quantities are very important pe
formance criteria in many engineering applications, it is
tempting to investigate the relations betwdeand the mini-
mal upper bound, mi@,,(F), over all sequences in the mi-
crocanonical ensemble with a merit factorfofFor our ana-
lytical calculation we consider the nonperiodic Bernasconi
model. Following Golay’s approximatiofill] we consider

the autocorrelations to be independent variables, where th

probability distribution, P(C), follows a Gaussian with
zero mean andN—K variance. Thus, the probability

P:(Cha0 that the autocorrelations of a sequence have ar

upper boundC ., (such thaiCy|<C.0) as well as a merit
factor F=N?/2H is given by
4

Since there are"2distinct binary sequences of length it is
necessary thaPr=2"N in order for a sequence with the
corresponding features, namely, a merit fadtoand an au-
tocorrelation upper boun@ ., to exist. Hence, in order to
find minC,,,(F), one has to minimizé®(C,5) under the
constraint that P.=2"N. To fulfill this constraint,
MIiNCa(F) must be of O(yN). Assigning mirC,,.(F)
=B(F)/N and inserting the integral representationsdtinc-
tion in Eq. (4) , the saddle-point method can be used to
obtain the following set of equations:

, N

N—-1
Cmax 1
Pr(C x)=f I1 chP<cK>5(— > Ci——
ma ~Coax K N& K 2F

N

2F o (1= pN)IN(1—puN)+ ]

—Efﬂ B(F)g(y.\)] dy= 5
2, nerfB(F)g(y,\)]dy=yx, 5
1 1
ﬁ-f—m['n(l_,u)\)'i‘,u)\]
_ 2 2
2 B(F) [t exd —B(F)7g(y,\)"] dy—0. (6)

w x JoerB(F)a(y,M)1g(y,\)

where g(y,\)=V1—uA(1-y)/u(l-y), #=2, and x
=<In(2) is the maximal value for which a solution exists.
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FIG. 1. The behavior oB(F) vs F is composed of three re-
gions. In the dashed region 0.288=<0.8, the fraction of se-
quencesP(Cna is getting larger ag increases, while in the
dotted-line region, 0.8 F<F,, this fraction decreases to ? asF
approached-.. For F>F_ (solid line) the fraction of sequences
with the minimal valueB(F) N is constant and equals 2.

correlations are independent variables is strongly violated for
high autocorrelated sequences. For such sequences the cor-
relations are typically of AY). Hence givenCy of O(N),

Ck: must be of ON) as well for allK’ of O(1). (b) The
correlations are typically of @) and, therefore, are at the

tail of the Gaussian distribution well beyond the standard
deviation.

The analysis oB(F) reveals that the minimal value of
B(F.)=0.435 is obtained foF.=8.839 whereas the maxi-
mal merit factorF=12.324 corresponds to a higher value of
B(F)=1. Thus, the merit factor of sequences, which mini-
mizes Cax, 1S around 71% lower thaf .. Exhaustive
search results in the regidwie [ 28,4(Q indicate that the av-
erage ratio between the two merit factar&,F¢) )/ F mayn » iS
~0.653 wherg(()) denotes the average over all sequences
which minimizeC ., whereag )y denotes the average over
the different N. The deviation from the analytical result
~0.717 is attributed to finite-size effects. Figure. 1 shows
the behavior oB(F) derived from the numerical solution of
Egs.(5) and(6). The behavior ofy [Eg. (5)] as a function of
F divides this graph into three regimes. In the first region,
whereF>F_, there are onlyO(1) sequences WhoS€,ax
equalsB(F)yN. In the second region, 08F <F. the num-
ber of sequences increases exponentially as F decreases. This
increment terminates &~ 0.8 and for smaller values &f
the number of sequences reducesOid) asF approaches

Solving numerically this set of equations, it turns out that a0.213. Aiming to compare between analytical resulté (

solution exists only for a bounded region &, where
0.213<F=12.324. These two limit values &f are alterna-
tively obtained by taking the limits of the integration in Eq.

—o0) for B(F) and simulation results for different values of
N, one has to overcome the mismatch between the different
domains off. The rescaling of by F,,,, yields a new pa-

(4) to infinity. Note that the highest autocorrelated sequencesameterF* =F/F ., whose range of value§),1], is inde-

for example (1,1,1....), hasF,~1/N, which tends to
zero asN—o in contradiction to the analytical resui,,
~0.213. Our analytical method fails to predict the right value
of Fnin for two main reasonsfa) The assumption that the

020102

pendent ofN. The rescalingurprisingly results in data col-
lapse of the functionB(F*) (Fig. 2. The meaning of the
data collapse is that for a givaBy the corresponding value
of F*, Fg, is almost independent dfi. This observation
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FIG. 2. B vs F/F . Analytical resultgsolid line) and exhaus- m

tive search results foN=32 (triangles, N=25 (starg, and N FIG. 3. B(F.) vsmas was obtained from the numerical solution
=21 (squares Note that the analyticaf is 12.324, whereas for  of Egs. (5) and (6) with =1 and y<In(m). The solid line is the
N=32, 25, and 21F .8, 8.68, and 8.48. Inset: The entropy per |east-square fit 0.54n.

bit, Sg(g) /N, of the set of all sequences with a merit fackoand
Crmax=B(F)YN as a function ofF/F ,, for N=32 (solid), N=28

(dashed, andN= 25 (dotted. The entropies are averaged over win- windows of size 0'02'_ In the smakt regime, the average
dows of size 0.02. number of sequences increases Viitand then decreases up

to the plateauregion in which the number of sequences is
O(1). Now weturn to study the influence of the number of
phases both on the maximal valueofand on the minimal
value of C,,,. We assigrDy andEy to be the real and the
ﬂﬁaginary parts ofCy, respectively. In case than=2P
wherep is an integer number greater than 1, the probability
data collapse, the problem of findirfg,.(N) can be solved w;glzz:gnrz’ez(:;r)}marld; (vi?i)ziljgg.oﬁr:zert?wr:eaSs%ﬁ;%nn
indirectly by choosing a certaifig € (0,1] and then finding  yha¢p, andE, are independent variables together with the

the minimalF under the constraint thﬂmasz_O\/Ni where  same assumptions which are used in the binary casd4Eq.
Bo=B(F§) (for F5=0.05 andN=100, for instanceB,  becomes

=2 independent oN, and the constraint i€ ,5,=2%10).

provides an alternative way to approxima#tg,,(N) for N's
which are still too large to allow an effective exhaustive
search. For such sequence lengths, the traditional way to a
proximateF ,.(N) is to use the simulated annealing method
to find sequences which maximize However, using our

This minimal F, which we denote by (By,N), when di- Crnax

vided by F¢ vyields an approximated upper bound for PE(Cmax):f [1 dDWdE(P(Dy)P(Ex)
FmaxN). The problem of findingF(By,N) is easier than " Cmax K

finding F,o{N) directly because as we show both analyti- N1 N

cally and numerically, there are regionsFoin which there is X 0| N & (DﬁvL Eﬁ ~5E| (7)

an exponential number of sequences with an upper bound
B(F/F ) VN. We have applied the simulated annealing . | o
method to findF (B,,N) for N=100,144, andB,=2. The A S|m|Iar_ procedure to that_ which is used to caIcBIBI(eF)
resultant upper bounds, . (100)<7.4120 andF,,(144) for the binary case results in Eq%) and(6) with u=1 and

<8.92 are much closer to the values obtained from extrapo¥ =/N(M). Solving numerically these two equations, the be-

lation of the exhaustive search resuld than the values haviors OfB(Fc):.minCmaKF)/\/N andF 5, as a function of
obtained using the traditional method. mare obtained. Figure 3 shows tH(F ) = 1/y/m with slight
Moreover, the existence of the three aforementioned redeviations for smalm. This relation betwee(F) andm

gions of PE(Cpna) is confirmed by counting the number of implies that such a relation holds f&(F ., as well. Since
sequences with the minimal autocorrelation upper boundhe variance oP(Cy) equalsN—K, the typical values o€
B(F) YN for each of the microcanonical ensembles with adrop linearly withK. HenceH=N?/2F is approximated by a
merit factor F. The entropy per bit of such sequences,SUm of an algebraic series bf—1 terms,Cg, with an au-
Se(r)/N, is demonstrated in the inset of Fig. 2, fof  tocorrelation upper bound;2,.,, of O(N/m). A homoge-
=25,28, and 32, where the merit factor is rescaled toneous distribution oC% between 0 toC3 ., vields a linear
F/F ... Note that for finite sequences, the entropies of seincrement off 5, as a function oim in agreement with the
qguences with a giveB(F) have large fluctuations. To over- numerical solution of ., which is depicted in the inset of
come these fluctuations, we have averaged the entropies oveig. 4. The results of,,, and B(F.) as a function ofm
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MiNg,Cre veals that form=N, minyCpa=21. Note that|Cy_,| is al-
10 . ways 1 and, therefore, mi€,.,,=1 holds for the entire re-
2000 gime m>N.

We used the simulated annealing method for sequences of
length N=32 with different number of phases, to find
. minC,,,(32). The relatively small sequence length was cho-
sen to enable an appropriate scan of the configuration space
in reasonable computational time. The results are displayed
in Fig. 4, and support the anticipated behavior G,
«+/N/m. Form= 32, there is a deviation of m@y,,, from the
analytical prediction mi€,,,,=1, probably since the simu-
lated annealing method yields only suboptimal solutions.

Finally, we would like to examine the simulated annealing
method in light of the results of this study. Simulations show
, that for the same running times, the simulated annealing
1 10 100 method vyieldsC,,., which is closer to its minimal value

m than F. This can be explained by the larger degeneracy of

FIG. 4. Results for miG,, as a function oin for N=32. The ~ Cmax COMpared with that oF. Moreover, it turns out that in
filled circles stand for the simulated annealing results. The deviatio@rder to minimizeC,,, it is preferable to start the searching
from the analytical resultgsolid line) is attributed to finite-size ~process with the minimization of the energy function,
effects and to the suboptimal solution obtained in our limited run-EE;iCZ , and then replace it witk 5 [17]. In this way the
ning times of the simulations. Inset: Analytical results igf,,as a  system avoids the plateaus which characterize the landscape
function of m obtained from the numerical solutidegs. (5) and  of C,,.,in the configuration space. However, future research
(6)]. The solid line is the least-square fit 817 is necessary to find out how the results of this study can be

show that the solutions of the two minimization problems areapp“ed to further improve the searching processes of low

improved by increasing the number of phases autocorrelated sequences.

These results raise the question whether it is possible to Critical comments on the manuscript by R. Metzler are
increasem such that miRC,.x becomes 1. An asymptotic acknowledged. The research is supported in part by the Israel
expansion of Eqs(5) and (6) with =1 and y<In(m) re-  Academy of Science.
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