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Low autocorrelated multiphase sequences
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The interplay between the ground-state energy of the generalized Bernasconi model to multiphase, and the
minimal value of the maximal autocorrelation function,Cmax5maxKuCKu, K51, . . . ,N21, is examined ana-
lytically in the thermodynamic limit where the main results are~a! For the binary case, the minimal value of
Cmax over all sequences of lengthN, minCmax, is 0.435AN, significantly smaller than the typical value for
random sequencesO(Alog NAN). ~b! A new method to approximateFmax is obtained using the observation of
data collapse.~c! minCmax is obtained in an energy which is about 30% above the ground-state energy of the
generalized Bernasconi model, independent of the number of phasesm. ~d! For a givenm, minCmax}AN/m
indicating that form5N, minCmax51, i.e., a generalized Barker code exists. The analytical results are con-
firmed by simulations.

DOI: 10.1103/PhysRevE.65.020102 PACS number~s!: 05.20.2y, 87.10.1e
se
on
te
s.
c
e
d
t

ic
di
co
rs
i

ns

r
e
ifi

th

a

a

or

e
s,

, 3,

-
r
4 or
se

x-
r-
tive

4.
se-
: Do

za-
rgy

es-
are

e

In many applications of communication science@1,2#, as
well as a variety of other fields, it is necessary to find
quences with low autocorrelation. Some of these applicati
utilize the pulse compression feature of low autocorrela
sequences to obtain high resolution in radars and sonar
other applications, the shifts of such periodic sequences
be used to identify users in multiuser systems. Due to th
importance, low autocorrelated sequences have evoke
wide spread interest accompanied by the developmen
various methods for constructing such sequences@1#.

In order to construct a binary sequenceS5(s1 , . . . ,sN)
with low off-peak autocorrelations, one has to define wh
quantity has to be minimized. The different applications
vide the low autocorrelated sequences into two types in
respondence with the quantity which they minimize. The fi
kind of low autocorrelated sequences minimizes the Ham
tonian of the Bernasconi model@3–8# which is given by

H5 (
K51

N21

CK
2 , ~1!

where for the case of nonperiodic boundary conditio
which is at the center of our study,

CK5 (
j 51

N2K

sjsj 1K , ~2!

and for the periodic caseCK5( j 51
N sjs[( j 1K21)modN] 11. This

is a deterministic model without explicit disorder. Howeve
since its ground states are highly disordered, this model
hibits features of a glass transition like a jump in the spec
heat @3# and slow dynamics and aging@4#. Note that for
random sequences the average value ofH in the nonperiodic
case isN2/2, whereas for low autocorrelated sequences
energy is reduced by a merit factorF.1 to N2/2F.

However, there are applications for which the maxim
off peak autocorrelation,Cmax5maxKuCKu, has to be mini-
mized. The second kind of low autocorrelated sequences
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the solutions of this minimization problem. Note that f
random sequencesCmax is typically O(AlogNAN). For a se-
quence of lengthN, the maximal possible ratio between th
peak, uC0u5N, and the maximal off-peak autocorrelation
uCKu with K51, . . . ,N21 is N/1. The only known binary
sequences with this ratio are the Barker codes of length 2
4, 5, 7, 11, and 13. Obviously, the Barker sequences@9#,
when they exist, furnish a minimum for the two minimiza
tion problems. However, Turyn@10# has shown that no othe
binary codes such as this exist for any length less than 14
for odd length greater than 13. An exact solution for the
two minimization problems is known only for systems~up to
N559) which are small enough to permit an effective e
haustive search@7#. Extrapolation of the ground-state ene
gies which were found for small systems using an exhaus
search indicates that the maximal value ofF, Fmax
5limN→`N2/2Hmin;8.5 @7#. Moreover, Fmax was conjec-
tured by Golay@11,12# to be bounded from above by 12.32

The following questions regarding low autocorrelated
quences are still open and are at the center of our study
the sequences that minimizeCmax minimize the energy of the
Bernasconi model as well? In case where the two minimi
tion problems are not equivalent, how far are the ene
values of the sequences which minimizeCmax from the val-
ues of the ground-state energy? Additional interesting qu
tions arise when multiphase sequences, whose terms
complexmth roots of 1 form.2, are considered@13–15#.
For such sequencessl5exp(i(2p/m)l) where l51, . . . ,m and
the correlations are defined as

CK5 (
j 51

N2K

sjsj 1K* , ~3!

wheresj 1K* is the conjugate ofsj 1K . What is the influence
of the number of phases both onFmax and on the minimal
value of Cmax, minCmax? Does a generalized Barker cod
exist for lengths larger thanN545 @16# which is the maxi-
©2002 The American Physical Society02-1
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mal length for which a multiphase Barker code has be
found? How does the minimal number of phases required
a Barker code grow withN?

In this paper we suggest an analytical technique to ca
late Fmax and minCmax for both binary and multiphase se
quences. Since these two quantities are very important
formance criteria in many engineering applications, it
tempting to investigate the relations betweenF and the mini-
mal upper bound, minCmax(F), over all sequences in the m
crocanonical ensemble with a merit factor ofF. For our ana-
lytical calculation we consider the nonperiodic Bernasc
model. Following Golay’s approximation@11# we consider
the autocorrelations to be independent variables, where
probability distribution, P(CK), follows a Gaussian with
zero mean andN2K variance. Thus, the probabilit
PF(Cmax) that the autocorrelations of a sequence have
upper boundCmax ~such thatuCKu<Cmax) as well as a merit
factor F5N2/2H is given by

PF~Cmax!5E
2Cmax

Cmax

)
K

dCKP~CK!dS 1

N (
K51

N21

CK
2 2

N

2F D .

~4!

Since there are 2N distinct binary sequences of lengthN, it is
necessary thatPF>22N in order for a sequence with th
corresponding features, namely, a merit factorF and an au-
tocorrelation upper boundCmax, to exist. Hence, in order to
find minCmax(F), one has to minimizePF(Cmax) under the
constraint that PF>22N. To fulfill this constraint,
minCmax(F) must be of O(AN). Assigning minCmax(F)
5B(F)AN and inserting the integral representation ofd func-
tion in Eq. ~4! , the saddle-point method can be used
obtain the following set of equations:

l

2F
2

1

m2l
@~12ml!ln~12ml!1ml#

2
2

mE0

1

ln erf@B~F !g~y,l!# dy5x, ~5!

1

2F
1

1

m2l2
@ ln~12ml!1ml#

1
2

m

B~F !

Ap
E

0

1 exp@2B~F !2g~y,l!2#

erf@B~F !g~y,l!#g~y,l!
dy50, ~6!

where g(y,l)5A12ml(12y)/m(12y), m52, and x
< ln(2) is the maximal value for which a solution exist
Solving numerically this set of equations, it turns out tha
solution exists only for a bounded region ofF, where
0.213<F<12.324. These two limit values ofF are alterna-
tively obtained by taking the limits of the integration in E
~4! to infinity. Note that the highest autocorrelated sequen
for example (1,1,1, . . . .), hasFmin;1/N, which tends to
zero asN→` in contradiction to the analytical resultFmin
;0.213. Our analytical method fails to predict the right val
of Fmin for two main reasons:~a! The assumption that th
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correlations are independent variables is strongly violated
high autocorrelated sequences. For such sequences the
relations are typically of O(N). Hence givenCK of O(N),
CK8 must be of O(N) as well for all K8 of O(1). ~b! The
correlations are typically of O(N) and, therefore, are at th
tail of the Gaussian distribution well beyond the standa
deviation.

The analysis ofB(F) reveals that the minimal value o
B(Fc)50.435 is obtained forFc58.839 whereas the maxi
mal merit factorF512.324 corresponds to a higher value
B(F)51. Thus, the merit factor of sequences, which mi
mizes Cmax, is around 71% lower thanFmax. Exhaustive
search results in the regionNP@28,40# indicate that the av-
erage ratio between the two merit factors,^^^Fc&&/Fmax&N , is
;0.653 wherê ^&& denotes the average over all sequen
which minimizeCmax whereaŝ &N denotes the average ove
the different N. The deviation from the analytical resu
;0.717 is attributed to finite-size effects. Figure. 1 sho
the behavior ofB(F) derived from the numerical solution o
Eqs.~5! and~6!. The behavior ofx @Eq. ~5!# as a function of
F divides this graph into three regimes. In the first regio
whereF.Fc , there are onlyO(1) sequences whoseCmax

equalsB(F)AN. In the second region, 0.8,F,Fc the num-
ber of sequences increases exponentially as F decreases
increment terminates atF;0.8 and for smaller values ofF
the number of sequences reduces toO(1) asF approaches
0.213. Aiming to compare between analytical resultsN
→`) for B(F) and simulation results for different values o
N, one has to overcome the mismatch between the diffe
domains ofF. The rescaling ofF by Fmax yields a new pa-
rameter,F* 5F/Fmax, whose range of values,~0,1#, is inde-
pendent ofN. The rescalingsurprisingly results in data col-
lapse of the functionB(F* ) ~Fig. 2!. The meaning of the
data collapse is that for a givenB0 the corresponding value
of F* , F0* , is almost independent ofN. This observation

FIG. 1. The behavior ofB(F) vs F is composed of three re
gions. In the dashed region 0.213<F<0.8, the fraction of se-
quencesPF(Cmax) is getting larger asF increases, while in the
dotted-line region, 0.8,F,Fc , this fraction decreases to 22N asF
approachesFc . For F.Fc ~solid line! the fraction of sequence
with the minimal valueB(F)AN is constant and equals 22N.
2-2



ve
a

od

or

ti-

u
ng

p

r
f

un
a

s

t
se
r-
o

p
is

of

lity

n
he
.

e-

f

r
er

n-

n

RAPID COMMUNICATIONS

LOW AUTOCORRELATED MULTIPHASE SEQUENCES PHYSICAL REVIEW E65 020102~R!
provides an alternative way to approximateFmax(N) for N’s
which are still too large to allow an effective exhausti
search. For such sequence lengths, the traditional way to
proximateFmax(N) is to use the simulated annealing meth
to find sequences which maximizeF. However, using our
data collapse, the problem of findingFmax(N) can be solved
indirectly by choosing a certainF0* P(0,1# and then finding
the minimalF under the constraint thatCmax5B0AN, where
B05B(F0* ) ~for F0* 50.05 andN5100, for instance,B0

52 independent ofN, and the constraint isCmax52310).
This minimal F, which we denote byF(B0 ,N), when di-
vided by F0* yields an approximated upper bound f
Fmax(N). The problem of findingF(B0 ,N) is easier than
finding Fmax(N) directly because as we show both analy
cally and numerically, there are regions ofF in which there is
an exponential number of sequences with an upper bo
B(F/Fmax)AN. We have applied the simulated anneali
method to findF(B0 ,N) for N5100,144, andB052. The
resultant upper boundsFmax(100)<7.4120 andFmax(144)
<8.92 are much closer to the values obtained from extra
lation of the exhaustive search results@7# than the values
obtained using the traditional method.

Moreover, the existence of the three aforementioned
gions of PF(Cmax) is confirmed by counting the number o
sequences with the minimal autocorrelation upper bo
B(F)AN for each of the microcanonical ensembles with
merit factor F. The entropy per bit of such sequence
SB(F) /N, is demonstrated in the inset of Fig. 2, forN
525, 28, and 32, where the merit factor is rescaled
F/Fmax. Note that for finite sequences, the entropies of
quences with a givenB(F) have large fluctuations. To ove
come these fluctuations, we have averaged the entropies

FIG. 2. B vs F/Fmax. Analytical results~solid line! and exhaus-
tive search results forN532 ~triangles!, N525 ~stars!, and N
521 ~squares!. Note that the analyticalFmax is 12.324, whereas fo
N532, 25, and 21,Fmax;8, 8.68, and 8.48. Inset: The entropy p
bit, SB(F) /N, of the set of all sequences with a merit factorF and
Cmax5B(F)AN as a function ofF/Fmax for N532 ~solid!, N528
~dashed!, andN525 ~dotted!. The entropies are averaged over wi
dows of size 0.02.
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windows of size 0.02. In the smallF regime, the average
number of sequences increases withF and then decreases u
to the plateau region in which the number of sequences
O(1). Now weturn to study the influence of the number
phases both on the maximal value ofF and on the minimal
value ofCmax. We assignDK andEK to be the real and the
imaginary parts ofCK , respectively. In case thatm52p

wherep is an integer number greater than 1, the probabi
distributions,P(DK) and P(EK), follow the same Gaussian
with zero mean andN2K variance. Under the assumptio
that DK andEK are independent variables together with t
same assumptions which are used in the binary case, Eq~4!
becomes

PF
m~Cmax!5E

2Cmax

Cmax

)
K

dDKdEKP~DK!P~EK!

3dF 1

N (
K51

N21

~DK
2 1EK

2 !2
N

2FG . ~7!

A similar procedure to that which is used to calculateB(F)
for the binary case results in Eqs.~5! and~6! with m51 and
x< ln(m). Solving numerically these two equations, the b
haviors ofB(Fc)5minCmax(F)/AN andFmax as a function of
m are obtained. Figure 3 shows thatB(Fc)}1/Am with slight
deviations for smallm. This relation betweenB(Fc) and m
implies that such a relation holds forB(Fmax) as well. Since
the variance ofP(CK) equalsN2K, the typical values ofCK
drop linearly withK. Hence,H5N2/2F is approximated by a
sum of an algebraic series ofN21 terms,CK

2 , with an au-
tocorrelation upper bound,Cmax

2 , of O(N/m). A homoge-
neous distribution ofCK

2 between 0 toCmax
2 yields a linear

increment ofFmax as a function ofm in agreement with the
numerical solution ofFmax, which is depicted in the inset o
Fig. 4. The results ofFmax and B(Fc) as a function ofm

FIG. 3. B(Fc) vs m as was obtained from the numerical solutio
of Eqs. ~5! and ~6! with m51 andx< ln(m). The solid line is the
least-square fit 0.54/Am.
2-3
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show that the solutions of the two minimization problems
improved by increasing the number of phasesm.

These results raise the question whether it is possibl
increasem such that minNCmax becomes 1. An asymptoti
expansion of Eqs.~5! and ~6! with m51 andx< ln(m) re-

FIG. 4. Results for minCmax as a function ofm for N532. The
filled circles stand for the simulated annealing results. The devia
from the analytical results~solid line! is attributed to finite-size
effects and to the suboptimal solution obtained in our limited r
ning times of the simulations. Inset: Analytical results forFmax as a
function of m obtained from the numerical solution@Eqs. ~5! and
~6!#. The solid line is the least-square fit 3.7m.
a

.

02010
e

to

veals that form5N, minNCmax51. Note thatuCN21u is al-
ways 1 and, therefore, minNCmax51 holds for the entire re-
gime m.N.

We used the simulated annealing method for sequence
length N532 with different number of phasesm, to find
minCmax(32). The relatively small sequence length was ch
sen to enable an appropriate scan of the configuration s
in reasonable computational time. The results are displa
in Fig. 4, and support the anticipated behavior minCmax

}AN/m. Form532, there is a deviation of minCmax from the
analytical prediction minCmax51, probably since the simu
lated annealing method yields only suboptimal solutions.

Finally, we would like to examine the simulated anneali
method in light of the results of this study. Simulations sho
that for the same running times, the simulated annea
method yieldsCmax, which is closer to its minimal value
than F. This can be explained by the larger degeneracy
Cmax compared with that ofF. Moreover, it turns out that in
order to minimizeCmax, it is preferable to start the searchin
process with the minimization of the energy functio
(K51

N21CK
2 , and then replace it withCmax @17#. In this way the

system avoids the plateaus which characterize the lands
of Cmax in the configuration space. However, future resea
is necessary to find out how the results of this study can
applied to further improve the searching processes of
autocorrelated sequences.

Critical comments on the manuscript by R. Metzler a
acknowledged. The research is supported in part by the Is
Academy of Science.
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